Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21.
نویسندگان
چکیده
Recent studies of trisomy 21 have shown that altered levels of recombination are associated with maternal non-disjunction occurring at both meiosis I (MI) and meiosis II (MII). To comprehend better the association of recombination with nondisjunction, an understanding of the pattern of meiotic exchange, i.e. the exchange of genetic material at the four-strand stage during prophase, is required. We examined this underlying exchange pattern to determine if specific meiotic configurations are associated with a higher risk of non-disjunction than others. We examined the crossover frequencies of chromosome 21 for three populations: (i) normal female meiotic events; (ii) meiotic events leading to MI non-disjunction; and (iii) those leading to MII non-disjunction. From these crossover frequencies, we estimated the array of meiotic tetrads that produced the observed crossovers. Using this approach, we found that nearly one-half of MI errors were estimated to be achiasmate. The majority of the remaining MI bivalents had exchanges that clustered at the telomere. In contrast, exchanges occurring among MII cases clustered at the pericentromeric region of the chromosome. Unlike the single exchange distributions, double exchanges from the non-disjoined populations seemed to approximate the distribution in the normal population. These data suggest that the location of certain exchanges makes a tetrad susceptible to non-disjunction. Specifically, this susceptibility is associated with the distance between the centromere and closest exchange. This result challenges the widely held concept that events occurring at MII are largely independent of events occurring at MI, and suggests that all non-disjunction events may be initiated during MI and simply resolved at either of the two meiotic stages.
منابع مشابه
New Insights into Human Nondisjunction of Chromosome 21 in Oocytes
Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short ...
متن کاملMaternal Betaine Homocysteine Methyltransferase Gene Polymorphism as a Risk Factor for Trisomy
Disorder in re-methylation process of homocysteine to methionine due to mutation in betaine homocysteine methyltransferase enzyme (BHMT) coding gene, leads to decrease in S-adenosyl methionine (SAM) synthesis which takes part in DNA methylation as a methyl donor. As a result, it can promote hypo-methylation of DNA, chromosome instability, and chromosome missegregation, which in turn is one of t...
متن کاملParental origin, nondisjunction, and recombination of the extra chromosome 21 in Down syndrome: a study in a sample of the Colombian population.
INTRODUCTION Free trisomy 21 is responsible for 95% of Down syndrome cases. Advanced maternal age and susceptible recombination patterns are recognized risk factors associated to Down syndrome. Maternal origin of trisomy occurs in approximately 90% of cases; paternal and mitotic origin share the remaining 10%. However, the recombination events that serve as a risk factors for trisomy 21 have no...
متن کاملNon-disjunction of chromosome 18.
A sample of 100 trisomy 18 conceptuses analysed separately and together with a published sample of 61 conceptuses confirms that an error in maternal meiosis II (MII) is the most frequent cause of non-disjunction for chromosome 18. This is unlike all other human trisomies that have been studied, which show a higher frequency in maternal meiosis I (MI). Maternal MI trisomy 18 shows a low frequenc...
متن کامل[Mutations in the methylene-tetrahydrofolate reductase gene and Down syndrome].
Down syndrome (DS) is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction). Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 6 9 شماره
صفحات -
تاریخ انتشار 1997